29,980 research outputs found

    Comment on "High Field Studies of Superconducting Fluctuations in High-Tc Cuprates. Evidence for a Small Gap distinct from the Large Pseudogap"

    Full text link
    By using high magnetic field data to estimate the background conductivity, Rullier-Albenque and coworkers have recently published [Phys.Rev.B 84, 014522 (2011)] experimental evidence that the in-plane paraconductivity in cuprates is almost independent of doping. In this Comment we also show that, in contrast with their claims, these useful data may be explained at a quantitative level in terms of the Gaussian-Ginzburg-Landau approach for layered superconductors, extended by Carballeira and coworkers to high reduced-temperatures by introducing a total-energy cutoff [Phys.Rev.B 63, 144515 (2001)]. When combined, these two conclusions further suggest that the paraconductivity in cuprates is conventional, i.e., associated with fluctuating superconducting pairs above the mean-field critical temperature.Comment: 9 pages, 1 figur

    A universal quantum circuit for two-qubit transformations with three CNOT gates

    Get PDF
    We consider the implementation of two-qubit unitary transformations by means of CNOT gates and single-qubit unitary gates. We show, by means of an explicit quantum circuit, that together with local gates three CNOT gates are necessary and sufficient in order to implement an arbitrary unitary transformation of two qubits. We also identify the subset of two-qubit gates that can be performed with only two CNOT gates.Comment: 3 pages, 7 figures. One theorem, one author and references added. Change of notational conventions. Minor correction in Theorem

    Anomalous precursor diamagnetism at low reduced magnetic fields and the role of Tc inhomogeneities in the superconductors Pb55In45 and underdoped La1.9Sr0.1CuO4

    Full text link
    The magnetic field dependence of the magnetization was measured above the superconducting transition in a high-Tc underdoped cuprate La1.9Sr0.1CuO4 and in a low-Tc alloy (Pb55In45). Near the superconducting transition [typically for (T-Tc)/Tc<0.05] and under low applied magnetic field amplitudes [typically for H/Hc2(0)<0.01, where Hc2(0) is the corresponding upper critical field extrapolated to T=0 K] the magnetization of both samples presents a diamagnetic contribution much larger than the one predicted by the Gaussian Ginzburg-Landau (GGL) approach for superconducting fluctuations. These anomalies have been already observed in cuprate compounds by various groups and attributed to intrinsic effects associated with the own nature of these high-Tc superconductors. However, we will see here that our results in both high and low-Tc superconductors may be explained quantitatively, and consistently with the GGL behavior observed at higher fields, by just taking into account the presence in the samples of an uniform distribution of Tc inhomogeneities. These Tc inhomogeneities, which may be in turn associated with stoichiometric inhomogeneities, were estimated from independent measurements of the temperature dependence of the field-cooled magnetic susceptibility under low applied magnetic fields.Comment: 25 pages, including 6 figures and 1 table. Typos corrected. Compacte

    Constructing N-qubit entanglement monotones from anti-linear operators

    Full text link
    We present a method to construct entanglement measures for pure states of multipartite qubit systems. The key element of our approach is an antilinear operator that we call {\em comb} in reference to the {\em hairy-ball theorem}. For qubits (or spin 1/2) the combs are automatically invariant under SL(2,\CC). This implies that the {\em filters} obtained from the combs are entanglement monotones by construction. We give alternative formulae for the concurrence and the 3-tangle as expectation values of certain antilinear operators. As an application we discuss inequivalent types of genuine four-qubit entanglement.Comment: 5 pages, revtex4; more detailed illustration of the metho
    • …
    corecore